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Volume Integral Equations for Analysis
of Dielectric Branching Waveguides

KAZUO TANAKA, MEMBER, IEEE, AND MASAAKI KOJIMA

Abstract —New forms of volume integral equations are developed for
the exact treatment of wave propagation in two-dimensional dielectric
branching waveguides. The new integral equations can be obtained by
considering the condition at a point far away from the junction section. An
approximate solution by the Born approximation and a numberical solution
by the moment method established the validity of the new volume integral
equations. The numerical results are discussed from the viewpoint of
energy conservation and reciprocity. The solution is exact if sufficiently
large computer memory and computational time are employed.

I. INTRODUCTION

HE DIELECTRIC branching waveguide is a basic

element in integrated circuits operating in the range
from millimeter to optical wavelengths. It is important to
know the basic characteristics of electromagnetic wave
propagation in the branching waveguide. It is not easy,
however, to analyze the wave propagation in detail in these
complex waveguide configurations. A variety of techniques
have been developed to make the problem mathematically
tractable. The beam propagation method (BPM), first in-
troduced by Feit and Fieck [1], is often used to calculate
transmission characteristics and radiation losses in the
branching waveguide [2]-[6]. Seino er al. analyzed the
intersecting waveguide by the improved BPM [7]. Ap-
proximate step theory, first developed by Marcuse [8], is
also used to calculate mode conversion in branching wave-
guides [9]-[12]. Kuznetsov and Haus [13] and Kuznetsov
[14] used the volume current method (VCM), which was
originally formulated by Snyder [15], to calculate the radi-
ation loss from several complex waveguide configurations.
Common shortcomings of all these analyses are their ap-
proximate treatment of the problem, and the accuracy of
the results obtained by these approximate techniques has
not been checked by techniques based on an exact treat-
ment.

In order to treat wave propagation in the dielectric
branching waveguides exactly, new forms of volume in-
tegral equations (VIE) are presented in this paper [16].
This was advanced for use in the numerical analysis of
scattering problems by dielectric objects of general shapes
[17], [18] and the technique is related to the VCM. We
regard the problem of wave propagation in the dielectric
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branching waveguide as a scattering problem. Since the
waveguide has infinite size, the original form of VIE
cannot be applied directly to the problem containing di-
electric waveguides of infinite length such as branching
waveguides.

The new VIE’s which are applicable to the branching
waveguide are derived by introducing specific conditions
at points far away from the waveguide junction, and these
VIE’s can be solved by conventional methods. This is
illustrated using the Born approximation and the moment
method. The validity of the new VIE’s is discussed from
the viewpoint of energy conservation and reciprocity. Since
the treatment of the problem is exact, the numerical solu-
tion becomes very accurate if sufficiently large computer
memory and computational times are employed.

II. GEOMETRY OF THE PROBLEM

The dielectric branching waveguide geometry considered
in this paper is shown in Fig. 1. We confine our attention
to two-dimensional dielectric waveguides due to their
mathematical simplicity. The time factor exp(jwt) is un-
derstood. In this paper, we treat grounded branching
waveguide due to the mathematical simplicity of the
Green’s function. The branching waveguide, which has no
grounded plane, can be treated similarly by introducing a
proper Green’s function. Waveguide 1 plus waveguide 2
constitute one straight dielectric waveguide of normalized
thickness kya located on a perfectly conducting plane at
y=—ua in Fig. 1, where k;=w/c and c is the velocity of
light in free space. Waveguide 3, of normalized thickness
2kgyb, is connected directly to the straight waveguide with
junction angle ¢, as shown in Fig. 1. It is assumed that
indices of refraction of dielectric waveguides 1, 2, and 3
are given by n;, n,;, and n,, respectively, surrounded by
free space. It is also assumed that all waveguides satisfy
the single-mode condition and that the propagating mode
is a TE mode only.

Since the electric fields have only a z component under
the above-mentioned conditions, we can denote electric
field intensity in the coordinate systems (x, y), (X, Y), and
(r,0) in Fig. 1 as

E(X)=E(x,y)=E(X,Y)=E(r,0). (1)

First consider the case where the TE-odd dominant mode
is incident from waveguide 1 to the junction section as
shown in Fig. 1. The incident wave is expressed in the x—y
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Fig. 1. Geometry of the problem.

coordinates of Fig. 1 by

ETO(X) =f(y)exp(— jBix) (2)

where

_ [sin[k(y+a)] (—a<y<0)
f(”‘{sin<xla>exp<~sly> 0<y O
and

k= (n3k3 - B2)"” 8,=(B-k3)"" (4

The reflected wave in waveguide 1, the transmitted wave in
waveguide 2, and the transmitted wave in waveguide 3 can
be expressed as

TuE?(l)()?) = T11f()’)eXP(+ jB1x)

T12E+(1)()?) = lef(J’)eXP(_ JBix)
T13E+(2)(3?) = T13F(Y)CXP(_ szx)

(5)

respectively, where a constant 7, , (i, j=1,2,3) means the
transmission coefficient in the jth waveguide for the case
of incidence from the ith waveguide. Therefore, 7;; and
T, are the reflection and transmission coefficient in wave-
guides 1 and 2, respectively, and 7, is the transmission
coefficient in waveguide 3. Function F(Y) in the X-Y
coordinates of Fig. 1 can be expressed as

cos(k,Y), Y|<bd
F(Y)={ cos(k,b)exp[8,(b—Y)]. Y>b  (6)
cos(k,0)exp [8,(b+T)], Y<-b

where
1/2 1/2
K2=(n§k§—,822) 82=(:822”k(2)) (7)
and the propagation constants 8; and B, are determined
by the dispersion relations given by

(in waveguides 1 and 2)

(8)

Kk, cos (kya )+ 8, sin(r,a) =0

K,sin(K,b)—8,cos(k,b) =0  (in waveguide 3).
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III.

From Maxwell’s equations and Green’s theorem, the
well-known volume integral equation for the total electric
field E(X)is [17]

E()?)=k§ff , [n?

semi-infinite space x> 0

E(X)dx + E*W(X)
=k§(n3=1) [[G(Aw)E

where n(xX) represents the distribution of the index of
refraction of the medium, with n(X) = n, in waveguide 3,
and n(xX)=1 in the surrounding space. In (9), G(X]X") is
the Green’s function of the system, where only waveguide
1 plus 2 exists on the metal plane. Therefore, the surface
integral in (9) extends over the infinite domain S of the
dielectric waveguide 3.

The total electric fields in waveguide 3 created by the
incident wave are very complicated. Only the transmitted
surface wave can survive at points far away from the
junction in waveguide 3. Hence, we assume that the total
electric fields in waveguide 3 can be decomposed into two
components as

INTEGRAL EQUATIONS

(#)-1]6(x1%)

(x")dx’+ E* (X)) (9)

E(X) =EC(X)+ T,E*®(X).

(10)

In (10), E€(X) means the electric field given by subtrac-
tion of the transmitted surface wave from the total fields
created by the branching discontinuity in the direction of
wave propagation in waveguide 3. We call E(X) the
disturbed field. It can be seen that the disturbed field is
confined to the vicinity of the junction section; i.e., it will
satisfy the following condition:

EC(X)=0

(0=¢,r > x0). (11)

Substituting (10) into (9), we consider the condition which
must hold at a point far away from the junction section in
waveguide 3. If the distance kyr from the origin O in Fig.
1 is sufficiently large, condition (11) shows that the follow-
ing relation must hold:

1) ffG(r $I%"
2-1) [[G(r $|3") E*O(X") dx”
(12)

Therefore, the transmission coefficient 7;, can be ex-
pressed as

TLE*O(F) = k2( (%) d%"

+ T13k

(r—00).

- ki(n3—1)[[sG(r, ¢|%) EC(F') d¥
BUErO(r,¢) = k2(n3-1)[[sG (r,¢|X) E @ (%) dx’
(13)

Using Green’s theorem, we can reduce the surface integral

(r—o0).
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in the denominator of (13) into a line integral as follows:
2-1) /fg(r ST ETO(3") d¥"

| IE*O (%)
C

an’
-G(r, ¢|f’)} dar

E*O(3)— k2

aG(r,¢|X")

Ere) =
n

(14)

where d/dn"= — 3 /3y’ and contour C corresponds to the
line y =0 in Fig. 1. Since k,r is a large value in (14), we
can expand the Green’s function in terms of 1/(k,r) by
using saddle-point integration [19] as

G(r,01%) = 4(r)g(81%)+ O[(kor) ¥  (15)

where
A(r) = — jra[2/(akor)] -exp (= jkor + jm/4). (16)

We first substitute (14) into (13), substitute expression (15)
into the resultant expression, and then divide the numera-
tor and denominator by the common function A(r). Put-
ting kyr — oo, the transmission coefficient 7;; can be
expressed in terms of the disturbed field E€(X) as

Ty = k§(n3=1) [ [ 5(617) EC(2) d¥ /M 2(4) (17)
where the constant M _,(¢) is given by

M+2(¢) =M+2(0)[0=¢
_ f [E*‘z)()‘c”) dg(01x")

PETO(3)
an’

an

-g(ﬂlf’)]dl’ (18)

=9

and this line integral can be readily evaluated. Substituting
(17) and (10) into (9) and using Green’s theorem again, we
finally obtain the new form of the VIE for the disturbed
field E€(X) as follows:

ES(R) = k3(n2— /fp(;q YES(R') dR/+ E*O(R)

(19)
where /
P(X|X) = G(X|X) + g($|X) S 12(X) /M ., (¢) (20)
and

S.a(®) = [E“’(*') Glx1¥)

E+(2) x/
_ ___f_)G (1)
an

As in (9), the two-dimensional integral in VIE (19) extends
over the infinite domain of dielectric waveguide 3. How-
ever, the disturbed field E(X) becomes zero sufficiently

(x| ar.
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Fig. 2. Illustration of contour ¢ in the Fourier integral (22).

far away from the junction point. Hence we can consider
that the infinite domain S in (19) is reduced to the finite
domain, where E€(X) is assumed not to be zero.

1IV. Tur GREEN’S FUNCTION

The Green’s function G(X]x”) in (9) is the solution of the
problems of an electric current line source located at
X=X’ above waveguides 1 plus 2. The result can be
written as a Fourier transform [19]:

1 1 o
G(flx')=Ef{;;exp(—11’|y—yl)—j;

-R(k)exp[—jp<y+y'>]}exp[—jk(x—x’)]dk (22)

where
R(k) = [gcos(ga) - jpsin(qa)]
/[gcos(ga)+ jpsin(ga)]
p=(k3=k)"" = (niki-K)" (23)

A contour c in (22) is illustrated in Fig. 2. The branch-cut
integrals represent the radiation fields; and residues at the
enclosed poles are the surface-wave modes in waveguides 1
and 2. The function g(8|x") can be obtained through
saddle-point integration as

g(81X") = exp (jkox'cosb + jkoy'sinf)

— R(kqcos8)exp( jkox' cosd — jkoy’sing). (24)

V. REFLECTED WAVE, TRANSMITTED WAVE, AND
SCATTERED WAVES

Once the disturbed field E€(X) has been determined,
the transmission coefficient 7}, in waveguide 2, the reflec-
tion coefficient 7}, in waveguide 1, and the scattered
waves in the surrounding space can be expressed by the
disturbed field. Substituting (10) into the original integral
equation (9), we calculate residues of Green’s function
(22). By using (14), the transmission and reflection coeffi-
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cients can be expressed as
T,=- j/2Aské(n% - 1)_[_[ exp(— 8,y = jBix")
s
"EC(X) dR'+ j/2T3A,
gy [— 8,E7()exp( jB,¥)
c

3E+(2)()?’)
+
an’
Iy, =— j/2Ask§(n% “1)

: f/:gexp(- 8 y'+ jByx") ES(X") dx”

exp(ajﬁlx')]dl' (25)

+ j/2T13Ast[‘ 8, E*P (%) exp (jByx")

8E+(2) v d
| IEP()
an’

+sin (ka)

wota

(26)

respectively, where

A, =2(n3ki ~B?)/{ k§(n3 —1)[B./8,+ Bial}. (27)

The scattered waves ES(r,8) can be obtained in similar
fashion by using the saddle-point integration of Green’s
function as

ES(r,68) = A(r)B,(6) (28)

where
B,(8) =k3(n%~1)/[gg(0|f’)EC(f’) dx’— T3 M ,,(6).
(29)

We notice from (17) and (29) that the scattered wave (28)
becomes zero at junction angle 6 = ¢. The reflected, trans-
mitted, and scattered powers normalized to the incident
wave power can be obtained by calculating the time-aver-
aged Poynting vector, and they are given by

= |T11|2/sin(i<1a) (30)
Ty, =|T,,1*/sin(k,a) (31)
Iy =2|T, U/ W (32)
Tyo =1/(8w)-fO”|Bl(0)|2d0/W (33)

respectively, where I,y (i=1,2,3) represents scattered
power normalized to the incident wave power for the case
of incidence from the ith waveguide and the constants U
and W are given by
U=B,[b/2+1/(4x,)sin (26,b) +1/(28,) cos? (x,b)]
(34)
W=p[a/2-1/(4x,)sin(2k,a) +1,/(28,) sin® (1,a)].
(35)
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For the case where the TE-odd dominant mode is incident
from waveguide 2, all the results can be obtained in the
same way as in the case of incidence from waveguide 1.

VI

We next consider the case where the TE-even dominant
mode is incident from waveguide 3. We substitute the total
field expression

E(X) = EY(X)+ TE*@(X)+ E-O(X)  (36)

into (9), where E*®(X) is omitted. In (36), E~®(X)
represents the incident wave given by

E~O(X) = F(Y) exp( j8,X).

INCIDENCE FROM WAVEGUIDE 3

(37)

Using relations (14) and (15) and Green’s theorem, the
resultant VIE is found to be

ES(%) =kb(n3=1) f[ P(A%) E(¥) d¥'

+M_,(6)/M,2($)S.,(X)+S_,(X) (38)
where
G (X)X
520 = [ | o) 207
—M_T(j,(x_zG(ﬂf’)}dl’ (39)

and where the constant M_,(¢) is given by

M_,(¢)=M_,(0)

0=9
9g(01x") JE-A(X)
- _ E*(Z} bvid _ 01" dl’
/C[ () — (0 -
. =¢
(40)

If the disturbed field E€(X) is obtained, the transmission
coefficients Ty, and T, is waveguides 1 and 2, the reflec-
tion coefficient T3; in waveguide 3, and the scattered
waves in the surrounding space can be expressed as

Tyy=~ j/24,k3(n}-1)

-/ fs exp (= 8,y'— jBx")E(%') dx’

+ J'/2T33Asfc['“ 31E+(2)(37) exp(—— jﬁlx/)

IE*O(3)
+————exp(~ jBx) |l
n

v 17245 [—alE-@’(f')exp(—jﬁle)

IE-O ()
+ e exp (= jBw) | dlf (41)
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I;,=- j/2f4sk(2)("% - 1)
: f fs exp(—8,y'+ jBx") ES(X") dx’

+ j/znsAsf.C[— 81E+(2)(55') exp ( jB;x")

3E+(2) b
+ ———(—x—l exp (j,le’)] ar

an’

+ j/24 fc — 8,E~ (") exp (i, x")

IE~ (%

E) ey e a @)

7oy = k303 -1) [ s(012) E<(#) 7 p_o(0)
/M 5(8) (43)
By(0) = k§(n3—1) [ [5(81%) ES() a¥"

"‘T33M+2(0)'M—2(0)- (44)

VIL
The total power must satisfy .the energy conservation
law, and this relation can be written as
3

Z th + s =Trorar =1
j=1

ENERGY CONSERVATION AND RECIPROCITY

(i=1,2,3). (45)
This relation can be used to check the numerical results.
The transmission coefficient or reflection coefficient T},
(i, j =1,2,3) must satisfy the reciprocity condition (sym-
metric property of the scattering matrix) and this relation
can be written as

I'.=T

1) Jt

(i, j=1,2,3). (46)

This relation also can be used to check the results.

-VIII. THE BORN APPROXIMATION

The new forms of VIE’s, (19) and (38), can be solved by
various techniques. Two techniques are used in this paper,
i.e., the Born approximation and the moment method. The
most simple approximate solution can be obtained by
replacing the disturbed field E€(X) by known functions.
The most simple case is by using information for the
incident waves. We call this approximation the Born ap-
proximation and put

ES(X)=E*®(X¥)  +:incident from waveguide 1

- : incident from waveguide 2
(47)

(incident from waveguide 3).
(48)

Substituting expressions (47) and (48) into the expressions

ES(X) =0
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Fig. 3. Division of waveguide 3 into right triangles.
for T, all the reflection and transmission coefficients can

ije
be evaluated easily and can be expressed analytically. The
actual expressions are omitted in this paper.

IX. MoMENT METHOD

We solve integral equations (19) and (38) numerically by
the moment method by dividing the domain of waveguide
3 into many right triangular elements, as shown in Fig,. 3,
which are small enough so that the disturbed electric field
intensity in each element is expressed by linear functions
given by

Ef(x,y)=A;x+B,y+C,. (49)
In (49), A4,, B, and C; are linear functions of values
ES(X) at vertices of the triangle, where the subscript i
refers to a particular element i. The disturbed electric field
intensity at each vertex is initially considered to be an
unknown quantity. Substituting (49) into (19) or (38) and
performing the line and surface integrals on the right-hand
side of (19) or (38), we enforce the VIE (19) or (38) at each
vertex. When we perform the line and surface integrals in
(19) and (38), we first perform the integral with respect to
variables x’ and )’ analytically, and then perform the
Fourier integral with respect to variable k¥ numerically
along the contour ¢ illustrated in Fig. 2. A system of N
linear equations can be obtained finally, where N is the
total number of vertices. The system of linear equations
can be solved numerically and numerical values at each
vertex obtained. If a sufficiently large number of triangles
with sufficiently small area is used, the solution will ap-
proach the exact solution.

X. NUMERICAL EXAMPLES

In the numerical calculations nusing the moment method,
we divide waveguide 3 into 642 triangles which have 432
vertices. For the case of ¢ =30°, koa=2.0, 2k,b=1.0,
and n,=n,=1.5, the numerical results of the disturbed
fields E€(x) along the upper side of waveguide 3 are
shown in Figs. 4-6 for the case of incidence from wave-
guide 1, 2, and 3, respectively. In Figs. 4-6, the abscissa
represents the normalized distance from the junction point
O’ in Fig. 1 and the solid and dotted lines show the real
and imaginary parts of E€(X), respectively. We see that
the disturbed field E€(X) becomes negligible far from the
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Fig. 4. Numerical examples of the disturbed field E€(¥X) along the
upper side of waveguide 3 for the case of incidence from waveguide 1.
The solid curve shows the real part and the dotted curve the imaginary
part. The abscissa k,/ is the normalized distance from the junction
point O in Fig. 1.
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(@)
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Fig. 5. Numerical examples of the disturbed field E€(X) along the
upper side of waveguide 3 for the case of incidence from waveguide 2.
The solid curve shows the real part and the dotted curve the imaginary
part. The abscissa ky/ is the normalized distance from the junction
point O’ in Fig. 1.

Junction. The scattering patterns of each case are il-
lustrated in Fig. 7. Note that the scattering pattern for the
case of incidence from waveguide 1 is magnified 16 times.
Since we could find no theoretical and experimental results
in the literature to compare with these scattering patterns,
we cannot discuss the accuracy of the results. However, the
shapes of the scattering patterns are expected from a
physical viewpoint.

Table I shows the numerical values of T}, T,5 and
I'orar- The results in parentheses are those obtained by
the Born approximation. It is seen that the basic behavior
of the wave propagation in the branching waveguide can
be found by the Born approximation only qualitatively but
not quantitatively. The validity of the Born approximation,
however, depends on many parameters, such as the dif-
ference of the index of refraction between the surrounding
space and the dielectric waveguides, the junction angle,
and the width of waveguide 3.

We notice that the results by the moment method satisfy
the energy conservation law well, but they satisfy reciproc-
ity only approximately. We feel that this is due to the size
of the triangles. Obtaining more accurate results requires
division of waveguide 3 into a larger number of triangles.
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DISTURBED FIELD E°

Fig. 6. Numerical examples of the disturbed field EC(X) along the
upper side of waveguide 3 for the case of incidence from waveguide 3.
The solid curve shows the real part and the dotted curve the imaginary
part. The abscissa k,/ is the normalized distance from the junction
point O’ in Fig,. 1.

x16
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© o

®) %

30

L L I 1 \ LN 1 L ] J

Fig. 7. Scattering patterns (A) for the case of incidence from waveguide
1, (B) for the case of incidence from waveguide 2, and (C) for the case
of incidence from waveguide 3. Notice that (A) is magnified 16 times.

TABLEI
NUMERICAL VALUES OF REFLECTED, TRANSMITTED, SCATTERED,
AND TOTAL POWERS NORMALIZED TO THE INCIDENT WAVE

2 3
fiz] ! [is Lo
1 0.0007 0.6827 0.2746 0.0368 0.9967
(0.0029) (0.7140) (0.1861) (0.0623) (0.9712)
0.7069 0.0119 0.0107 0.2634 0,9930
2 1 (1.2160) (0.0005) (0.0008) (0,1293) (1.3467)
3 0.2836 0.0083 0.0026 0.7049 1,0000
(0.5459) (0.0006) (0.0010) (0.5283) (1.0758)

Results in parentheses are those obtained by the Born ap-
proximation. Column i (1,2,3) shows the normalized transmitted
power for the case of incidence from the rth waveguide and row j
(1,2,3) shows the result in the jth waveguide.

XI.

New forms of volume integral equations for wave propa-
gation in dielectric branching waveguide based on an exact
theory have been presented. The new integral equations
have been solved approximately by the Born approxima-
tion and numerically by the moment method. The solu-
tions are discussed from the viewpoint of energy conserva-
tion and reciprocity. The validity of the new volume

CONCLUSIONS
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integral equations has been demonstrated. Additional
numerical results will be presented in a future paper.

The method using new volume integral equations is
promising, since it can be extended to problems of a more
general nature, i.e., the incident TM mode, and more
complex configurations of branching waveguides. The basic
idea is also applicable to techniques using boundary
(surface) integral equations [20], [21] which are applicable
to three-dimensional problems. This problem is currently
under consideration.
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