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Volume Integral Equations for Analysis
of Dielectric Branching Wavegui’des

~U~ TANAKA, MEMBER, IEEE, AND MASAAKI KOJIMA

Abstract —New forms of volume integraf equations are developed for

the exact treatment of wave propagation in two-dimensional dielectric

branching waveguides. The, new integmf equations cau be obtained by

considering the condition at a point far away from the junction section. An

approximate solution by the Born approximation and a numbericaf solution

by the moment method established the validity of the new volume integral

equations. The numerical results are discussed from the viewpoint of

energy conservation and reciprocity. The solution is exact if sufficiently

large computer memory and computational time are employed.

1, INTRODUCTION

T HE DIELECTRIC branching waveguide is a basic

element in integrated circuits operating in the range

from millimeter to optical wavelengths. It is important to

know the basic characteristics of electromagnetic wave

propagation in the branching waveguide. It is not easy,

however, to analyze the wave propagation in detail in these

complex waveguide configurations. A variety of techniques

have been developed to make the problem mathematically
tractable. The beam propagation method (BPM), first in-

troduced by Feit and Fleck [1], is often used to calculate

transmission characteristics and radiation losses in the

branching waveguide [2]–[6]. Seino et al. analyzed the

intersecting waveguide by the improved BPM [7]. Ap-

proximate step theory, first developed by Marcuse [8], is

also used to calculate mode conversion in branching wave-

guides [9]–[12]. Kuznetsov and Haus [13] and Kuznetsov

[14] used the volume current method (VCM), which was

originally formulated by Snyder [15], to calculate the radi-

ation loss from several complex waveguide configurations.

Common shortcomings of all these analyses are their ap-

proximate treatment of the problem, and the accuracy of

the results obtained by these approximate techniques has

not been checked by techniques based on an exact treat-

ment.

In order to treat wave propagation in the dielectric

branching waveguides exactly, new forms of volume in-

tegral equations (VIE) are presented in this paper [16].

,This was advanced for use in the numerical analysis of

scattering problems by dielectric objects of general shapes

[17], [18] and the technique is related to the VCM. We

regard the problem of wave propagation in the dielectric
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branching waveguide as a scattering problem. Since the

waveguide has infinite size, the original form of VIE

cannot be applied directly to the problem containing di-

electric waveguides of infinite length such as branching

waveguides.

The new VIE’S which are applicable to the branching

waveguide are derived by introducing specific conditions

at points far away from the wave guide junction, and these

VIES can be solved by conventional methods. This is

illustrated using the Born approximation and the moment

method. The validity of the new VIE’s is discussed from

the viewpoint of energy conservat ion and reciprocity. Since

the treatment of the problem is exact, the numerical solu-

tion becomes very accurate if sufficiently large computer

memory and computational times are employed.

II. GEOMETRY OF THE PROBLEM

The dielectric branching waveguide geometry considered

in this paper is shown in Fig. 1. ‘We confine our attention

to two-dimensional dielectric waveguides due to their

mathematical simplicity. The time factor exp ( jcot ) is un-

derstood. In this paper, we treat grounded branching

waveguide due to the mathematical simplicity of the

Green’s function. The branching waveguide, which has no

grounded plane, can be treated similarly by introducing a

proper Green’s function. Waveguide 1 plus waveguide 2

constitute one straight dielectric waveguide of normalized

thickness /coa located on a perfectly conducting plane at

y = – u in Fig. 1, where kO = ti/c and c is the velocity of

light in free space. Waveguide 3, of normalized thickness

2kob, is connected directly to the straight waveguide with

junction angle O, as shown in Fig. 1. It is assumed that

indices of refraction of dielectric waveguides 1, 2, and 3

are given by nl, nl, and n ~, respectively, surrounded by

free space. It is also assumed that all waveguides satisfy

the single-mode condition and that the propagating mode

is a TE mode only.

Since the electric fields have only a z component under

the above-mentioned conditions, we can denote electric

field intensity in the coordinate systems (x, y), (X, Y), and

(r,6) in Fig. 1 as

E=(I) =E(x, y) =E(X, Y) =E(r, O). (1)

First consider the case where the TE-odd dominant mode

is incident from waveguide 1 to the junction section as

shown in Fig. 1. The incident wave is expressed in the x – y
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Fig. 1. Geometry of the problem.

coordinates of Fig. 1 by

E+(l) (i)= f(y)exp(–jB1x) (2)

where

f(Y) =
(

sin[~l(y+ a)]
[;:;)y < 0) (3)

sin(Kla)exp (– 81y)

and

K,=(n;k&/3y/2 81= (p: – k:)’”. (4)

The reflected wave in waveguide 1, the transmitted wave in

waveguide 2, and the transmitted wave in waveguide 3 can

be expressed as

TllJ@)(a=~llf (Y)exP ( + ~P,x)

7’1,~+(1)(~) = T12f(y) w( - MIX)

T13E+(2)(Z)= T131’(Y)eq3(- .#2x) (5)

respectively, where a constant ~, (i, j =1,2,3) means the

transmission coefficient in the jth waveguide for the case

of incidence from the i th waveguide. Therefore, Tll and

Tlz are the reflection and transmission coefficient in wave-

guides 1 and 2, respectively, and T13 is the transmission

coefficient in waveguide 3. Function I’(Y) in the X– Y

coordinates of Fig. 1 can be expressed as

{

COS(K2Y), lYl<b

F(Y) = cos(~,b) exp[8,(b– Y)], Y>b (6)

cos(K2b)exp [82( b+ Y)], Y<–b

where

Ic’=(n;k; -p:y’ a’= (p;– k;)’” (7)

and the propagation constants & and ~2 are determined

by the dispersion relations given by

K1cos(K1a) +81sin(K1a) =0 (in waveguides 1 and 2)

K2Sill(K2b) -~2COS(K2b) =() (in waveguide 3). (8)

III. INTEGRAL EQUATIONS

From Maxwell’s equations and Green’s theorem, the

well-known volume integral equation for the total electric

field E(3 is [17]

senl.,nfln,,e .Pacex >o[~2@’) -11 G(a~)
E(:)= k;// ,, ., r

.E(F)dP+E+(l)(i)

=k:(n; –1)//G(~~)E(7) d~+E+(l)(Z) (9)
s

where n (x7 represents the distribution of the index of

refraction of the medium, with n (x3 = n‘ in waveguide 3,

and n (X3 = 1 in the surrounding space. In (9), G (~ ,?) is

the Green’s function of the system, where only waveguide

1 plus 2 exists on the metal plane. Therefore, the surface

integral in (9) extends over the infinite domain S of the

dielectric waveguide 3.

The total electric fields in waveguide 3 created by the

incident wave are very complicated. Only the transmitted

surface wave can survive at points far away from the

junction in waveguide 3. Hence, we assume that the total

electric fields in waveguide 3 can be decomposed into two

components as

E(~) =Ec(~)+ T’qE+(2)(~). (lo)

In (10), E C(X7 means the electric field given by subtrac-

tion of the transmitted surface wave from the total fields

created by the branching discontinuity in the direction of

wave propagation in waveguide 3. We call E C(X7 the

disturbed field. It can be seen that the disturbed field is

confined to the vicinity of the junction section; i.e., it will

satisfy the following condition:

EC(;)=O (O=rj, r~m). (11)

Substituting (10) into (9), we consider the condition which

must hold at a point far away from the junction section in

waveguide 3. If the distance kor from the origin O in Fig.

1 is sufficiently large, condition (11) shows that the follow-

ing relation must hold:

T1,E+(2)(.F) =k:(n:-l)~~G(r, @ll’)Ec(~) dl

+ Tlqk;(n; –l)jj G(r, @lY)E+(2)(~) d,?
s

(l”+co). (12)

Therefore, the transmission coefficient T13 can be ex-

pressed as

k;(n; –l)//sG(r, @lj?’)Ec(:’)dF

’13= E+(2) (r, r#r)-k; (n; -1)//~ G(r, @)E+(2)(~) d,?

(r+@). (13)

Using Green’s theorem, we can reduce the surface integral
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in the denominator of (13) into a line integral as follows:

/[ ()
dG(r, r/@’) dE+(2)(i’)——— E+(2) ~

c L?a’ – Jn’

1
.G(r, q51F) dl’ (14)

where 8/8 n‘ = – d/d y’ and contour C corresponds to the

line y = O in Fig. 1. Since kOr is a large value in (14), we

can expand the Green’s function in terms of 1/( kOr) by

using saddle-point integration [19] as

G(r,61Z’) =A(r)g(61i’) +O[(kOr)-3’2] (15)

where

A(~) = – j/4[2/(mkOr)]”2. exp ( – jkor + j7r/4). (16)

We first substitute (14) into (13), substitute expressiori (15)

into the resultant expression, and then divide the numera-

tor and denominator by the common function A(r). Put-

ting kor - co, the transmission coefficient T13 can be

expressed in terms of the disturbed field E C(XO as

1241
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Fig. 2. Illustration of contour c in the Fourier integral (2’2).

far away from the junction point. Hence we can consider

that the infinite domain S in (19) is reduced to the finite

domain, where EC(X7 is assumed not to be zero.

IV. THE GREEN’S FUNCTION

The Green’s function G(ilF) in (9) is the solution of the

problems of an electric current line source located at

7= 1’ above waveguides 1 plus 2. The result can be

written as a Fourier transform [19]:

where the constant M+ 2(+) is given by

~+2(o) ‘J4+2(6)IO=+ .R(k)exp [–jp(y+ y’)]} exp[-jlr(x–x’)]dk (22)

J[ ()
ag(qi’) aE+(2)(m=— E+(2) ~

c dn’ – dn’

1
.g(elif) dl’ (18)

8=*

and this line integral can be readily evaluated. Substituting

(17) and (10) into (9) and using Green’s theorem again, we

finally obtain the new form of the VIE for the disturbed

field “EC(3 as follows:

Ec(~)=k~(n~-l)~~ ~i’: Ec(i?’) d~+ E+(l)(I)

(19)

where

I’(ZIi’) = G(~Z’)+ g(@li’)S+2(~)/~ +2(+) (20)

and

[

r3G(llX’)
S+2(%) = ~ E+(2)(F)

c dn’

~E+(2)(3
an’ 1

G(.713’) all’. (21)

As in (9), the two-dimensional integral in VIE (19) extends

over the infinite domain of dielectric waveguide 3. How-

ever, the disturbed field E C(X3 becomes zero sufficiently

where

R(k) = [qcos(qa)- jpsin(qa)]

/[qcos(qa)+ jpsin(da)]

~=(k:_kz)lz2 q = (n~kj – k2)l’2. (23)

A contour c in (22) is ilhistrated in Fig. 2. The branch-cut

integrals represent the radiation fieldsj and residues at the

enclosed poles are the surface-wave modes in waveguides 1

and 2. The function g(91~) can be obtained through

saddle-point integration as

g(61fl) = exp(jkOx’cos O + ~kOy’sin O)

– R(kOcos O)exp(jkOx’cos O – jkOy’sinO). (24)

V. REFLECTED WAVE, TRANSMITTED WAVE, AND

SCATTERED ‘WAVES

Once the disturbed field EC(X3 has been determined,

the transmission coefficient T12 in waveguide 2, the reflec-

tion coefficient ~11 in waveguide 1, ~d the scattered

waves in the surrounding space can be expressed by the

disturbed field. Substituting (10) into the original integral

equation (9), we calculate residues of Green’s function

(22). By using (14), the transmission and reflection coeffi-
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cients can be expressed as

.Ec(i”) dr+ j/2T&4,

“J[-c$1E+(2)(7)exp(- j~lx’)
c

flE+(2)(~)+
an’ I

exp ( – j~lx’) dl’

T12= – j/2A,k~(n~ –1)

(25)

J~exP(- 81Y’+ jf?lX’) EC(7) di?’

+ j/2 T13A~
J[

- 81E+(2)(F) exp ( j&x’)
c

+
aE+(2)(m

an’ 1
exp ( j&x’) dl’

+sin(Kla) (26)

respectively, where

A,=2(n;k &&)/{ k:(~:-l)[&/61+ &a]}. (27)

The scattered waves E‘( r, 8 ) can be obtained in similar

fashion by using the saddle-point integration of Green’s

function as

Es(r,0)=A(r)B1(6) (28)

where

We notice from (17) and (29) that the scattered wave (28)

becomes zero at junction angle 6 = ~. The reflected, trans-

mitted, and scattered powers normalized to the incident

wave power can be obtained by calculating the time-aver-

aged Poynting vector, and they are given by

rll = lTl112/sin (Kla) (30)

r12 = lT1212/sin (Kla ) (31)

rl~ = 21T1312f,7/W (32)

rl~=l/(8n).~mlB1(0)12d0/W (33)
o

respectively, where rls (i= 1,2, 3) represents scattered
power normalized to the incident wave power for the case

of incidence from the i th waveguide and the constants U

and W are given by

U= @/2+1/( 41C2) sin(2@) +l\(’2~2)COS2 (K, b)]

(34)

W= ~l[f2/2– l/(4K1) sin(2tc1a) +1/(281) sin’ (Kla)] .

(35)

For the case where the TE-odd dominant mode is incident

from waveguide 2, all the results can be obtained in the

same way as in the case of incidence from waveguide 1.

VI. INCIDENCE FROM WAVEGUIDE 3

We next consider the case where the TE-even dominant

mode is incident from waveguide 3. We substitute the total

field expression

E(i) = EC(I)+ T33E+(2J(i’)+ E-(’)(i) (36)

into (9), where E+(l)(x~ is omitted. In (36), E-(2)(x7

represents the incident wave given by

~-(z)(q = F(Y)exp( iB2x) (37)

Using relations (14) and (15) and Green’s theorem, the

resultant VIE is found to be

Ec(;)=k~(n~ –l)~~P(~~)Ec(7)d2
s

+M_2(0)/iW+2(@) S+2(~)+S_2(2) (38)

where

[

aG(i’ii”)
S_2(i) =j E-(2)(~)

c an’

aE-(2)(~)—
an’ 1

G(~~) dl’ (39)

and where the constant M_ 2(0) is given by

M-2(@)=iK2(9) *=+

(40)

If the disturbed field EC(X3 is obtained, the transmission

coefficients T31 and T32 is waveguides 1 and 2, the reflec-

tion coefficient T33 in waveguide 3, and the scattered

waves in the surrounding space can be expressed as

+ j/2 T33As
J[

- 81E+(2)(F) exp (- j~lx’)
c

aE+(2)(a+
an’ 1

exp( – j&x’) dl’

[
+ j/2A~~ – 81E-(2)(~) exp ( – j~lx’)

c

+
a=(’) (-n

an’ 1
exp ( – j~lx’) dl’ (41)
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T,, = – j/2 A&(n~-1)

+ j/2T33A~
J[

- 81E+(2)(3) exp ( j~lx’)
c

+ OE+(2)(7)

an’ 1
exp ( j&x’) dl’

[
+ j/2A~~ – 81E-(2)(~) exp ( j&x’)

c

+
~E-(2)(a

8n’ 1
exp ( j&x’) dl’ (42)

?’

T
a

Fig. 3. Division of waveguide 3 into right triangles.

for ~j, all the reflection and transmission coefficients can

be evaluated easily and can be expressed analytically. The

actual expressions are omitted irk this paper.

[ dT33= k~(n~–l)~fg(@@)Ec(~) d~– M_2 +) IX. MOMENT METHOD

s We solve integral equations (19) and (38) numerically by

/~+2(@) (43) the moment method by dividing the doma@ of waveguide

3 into many right triangular elements, as shown in Fig. 3,
B3(6)=k:(n; –l)~~g(Ol~)Ec(~)d~ which are small enough so that the disturbed electric field

intensity in each element is expressed by linear functions
– T,, M+2(@)s– M.,(d). (44) given by

VII. ENERGY CONSERVATION AND RECIPROCITY

The total power must satisfy the energy conservation

law, and this relation can be written as

~ r,, + ri~s rTOTAL = 1 (i=l,2,3). (45)
j=l

This relation can be used to check the numerical results.

The transmission coefficient or reflection coefficient ~J

(i, j =1,2,3) must satisfy the reciprocity condition (sym-

metric property of the scattering matrix) and this relation

can be written as

r,j = rj, (i, j=l,2,3). (46)

This relation also can be used to check the results.

VIII. THE BORN APPROXIMATION

The new forms of VIE’s, (19) and (38), can be solved by

various techniques. Two techniques are used in this paper,

i.e., the Born approximation and the moment method. The

most simple approximate solution can be obtained by

replacing the disturbed field E C(X3 by known functions.

The most simple case is by using information for the

incident waves. We call this approximation the Born ap-

proximation and put

Ec(~) = E+(l)(i) +: incident from waveguide 1

-: incident from waveguide 2

(47)

EC(Z) = O (incident from waveguide 3).

(48)

Substituting expressions (47) and (48) into the expressions

E:(x> y) =AiX + Biy+Ci. (49)

In (49), A,, Bi, and Ci are linear functions of values
EC(3 at vertices of the triangle, where the subscript i

refers to a particular element i. The disturbed electric field

intensity at each vertex is initially considered to be an

unknown quantity. Substituting (49) into (19) or (38) and

performing the line and surface integrals on the right-hand

side of (19) or (38), we enforce the VIE (19) or (38) at each

vertex. When we perform the lirle and surface integrals in

(19) and (38), we first perform the integral with respect to

variables x’ and y’ analytically, and then perform the

Fourier integral with respect to variable k numerically

along the contour c illustrated in Fig. 2. A system of N

linear equations can be obtained finally, where N is the

total number of vertices. The system of linear equations

can be solved numerically and numerical values at each

vertex obtained. If a sufficiently large number of triangles

with sufficiently small area is used, the solution will ap-

proach the exact solution.

X. NUMERICAL EXAMPLES

In the numerical calculations using the moment method,

we divide waveguide 3 into 642 triangles which have 432

vertices. For the case of @= 30°, koa = 2.0, 2kOb = 1.0,

and nl = n z = 1.5, the numerical results, of the disturbed

fields Et(x) along the upper side of waveguide 3 are

shown in Figs. 4–6 for the case of incidence from wave-

guide 1, 2, and 3, respectively. In Figs. 4–6, the abscissa

represents the normalized distan c. from the junction point

O’ in Fig. 1 and the solid and dotted lines show the real

and imaginary parts of Ec(x~, respectively. We see that

the disturbed field EC(X3 becomes negligible far from the
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10T

–05
t

Fig. 4. Numerical examples of the disturbed field EC(.Z) along the

upper side of waveguide 3 for the case of incidence from waveguide 1.
The solid curve shows the real part and the dotted curve the imaginary

part. The abscissa kol is the normalized distance from the junction
point 0’ in Fig. 1.

Fig. 5. Numerical examples of the disturbed field EC(3 along the

upper side of wavegtide 3 for the case of incidence from waveguide 2.
The solid curve shows the real part and the dotted curve the imaginary

part. The abscissa kol is tie normalized distance from the junction

point O’ in Fig. 1.

junction. The scattering patterns of each case are il-

lustrated in Fig. 7. Note that the scattering pattern for the

case of incidence from waveguide 1 is magnified 16 times.

Since we could find no theoretical and experimental results

in the literature to compare with these scattering patterns,

we cannot discuss the accuracy of the results. However, the

shapes of the scattering patterns are expected from a

physical viewpoint.

Table I shows the numerical values of 17ij, 17,~ and

rTOTAL. The results in parentheses are those obtained by
the Born approximation. It is seen that the basic behavior
of the wave propagation in the branching waveguide can

be found by the Born approximation only qualitatively but

not quantitatively. The validity of the Born approximation,

however, depends on many parameters, such as the dif-

ference of the index of refraction between the surrounding

space and the dielectric waveguides, the junction angle,

and the width of waveguide 3.

We notice that the results by the moment method satisfy

the energy conservation law well, but they satisfy reciproc-

ity only approximately. We feel that this is due to the size

of the triangles. Obtaining more accurate results requires

division of waveguide 3 into a larger number of triamzles.

10r

L

n A l.. 1 1 I I I I I J

g 00 -c f’ ’10 20 30 40 50

kO[ —

1
,,

-05 ‘“

Fig. 6. Numerical examples of the disturbed field EC(3 along the

uPper side of wavegtide 3 for thecaseof incidence from waveguide 3.
The solid curve shows the reaf part and the dotted curve the imaginary
part. The abscissa kol is the normalized distance from the junction
point O’ in Fig. 1.

T

x16

xl

1 1 8 [ ,

Fig. 7. Scattering patterns (A) for the case of incidence from waveguide

1, (B) for the case of incidence from waveguide 2, and (C) for the case

of incidence from waveguide 3. Notice that (A) is magnified 16 times.

TABLE I
NUMERICAL VALUES OF REFLECTED, TRANSMITTED, SCATTERED,

AND TOTAL POWERS NORMALIZED TO THE INCIDENT WAVE

l-il ‘
2 3

K I l-%

1
0,0007 0,6827 0,2746 0,0368 0,9967

(0,0029) (0,7140) (0,1861) (0,0623) (0,9712)

0,7069 0.0119 0,0107 0,2634 0,9930

2 (1.2160) (0,0005) (0,0008) (O,1293) (1,3467)

3
0,2836 0.0089 0,0026 0,7049 180000

(0,5459) (0,0006) (0!0010) (0,5283) (1.0758)

Results in parentheses are those obtained by the Born ap-
proximation. Column i (1,2,3) shows the normalized transmitted
power for the case of incidence from the ~th waveguide and row j

(1, 2,3) shows the result in the jth waveguide.

XI. CONCLUSIONS

New forms of volume integral equations for wave propa-

gation in dielectric branching waveguide based on an exact

theory have been presented. The new integral equations

have been solved approximately by the Born approxima-

tion and numerically by the moment method. The solu-

tions are discussed from the viewpoint of energy conserva-

tion and reciprocity. The validity of the new volume
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integral equations has been demonstrated. Additional

numerical results will be presented in a future paper.

The method using new volume integral equations is

promising, since it can be extended to problems of a more

general nature, i.e., the incident TM mode, and more

complex configurations of branching waveguides. The basic

idea is also applicable to techniques using boundary

(surface) integral equations [20], [21] which are applicable

to three-dimensional problems. This problem is currently

under consideration.
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